3.9.40 \(\int \cot ^{\frac {7}{2}}(c+d x) \sqrt {a+b \tan (c+d x)} \, dx\) [840]

Optimal. Leaf size=261 \[ \frac {\sqrt {i a-b} \text {ArcTan}\left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {\sqrt {i a+b} \tanh ^{-1}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {2 \left (15 a^2+2 b^2\right ) \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}{15 a^2 d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}{15 a d}-\frac {2 \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}{5 d} \]

[Out]

arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*(I*a-b)^(1/2)*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/
d-arctanh((I*a+b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*(I*a+b)^(1/2)*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/
2)/d-2/15*b*cot(d*x+c)^(3/2)*(a+b*tan(d*x+c))^(1/2)/a/d-2/5*cot(d*x+c)^(5/2)*(a+b*tan(d*x+c))^(1/2)/d+2/15*(15
*a^2+2*b^2)*cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2)/a^2/d

________________________________________________________________________________________

Rubi [A]
time = 0.61, antiderivative size = 261, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {4326, 3649, 3730, 3697, 3696, 95, 209, 212} \begin {gather*} \frac {2 \left (15 a^2+2 b^2\right ) \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}{15 a^2 d}+\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \text {ArcTan}\left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {2 \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}{5 d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}{15 a d}-\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tanh ^{-1}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^(7/2)*Sqrt[a + b*Tan[c + d*x]],x]

[Out]

(Sqrt[I*a - b]*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[Tan
[c + d*x]])/d - (Sqrt[I*a + b]*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Cot[c
 + d*x]]*Sqrt[Tan[c + d*x]])/d + (2*(15*a^2 + 2*b^2)*Sqrt[Cot[c + d*x]]*Sqrt[a + b*Tan[c + d*x]])/(15*a^2*d) -
 (2*b*Cot[c + d*x]^(3/2)*Sqrt[a + b*Tan[c + d*x]])/(15*a*d) - (2*Cot[c + d*x]^(5/2)*Sqrt[a + b*Tan[c + d*x]])/
(5*d)

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3649

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^n/(f*(m + 1)*(a^2 + b^2))), x] + Dist[1/((m + 1)*(a^2
+ b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*c*(m + 1) - b*d*n - (b*c - a*d)*
(m + 1)*Tan[e + f*x] - b*d*(m + n + 1)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c -
 a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && GtQ[n, 0] && IntegerQ[2*m]

Rule 3696

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[A^2/f, Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e
+ f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[A^2 +
 B^2, 0]

Rule 3697

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A + I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 -
 I*Tan[e + f*x]), x], x] + Dist[(A - I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 + I*Tan[e +
f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2
 + B^2, 0]

Rule 3730

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Ta
n[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Dist[1/((m + 1)*(
b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1)
 - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e
+ f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C,
 n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !I
ntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 4326

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rubi steps

\begin {align*} \int \cot ^{\frac {7}{2}}(c+d x) \sqrt {a+b \tan (c+d x)} \, dx &=\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\sqrt {a+b \tan (c+d x)}}{\tan ^{\frac {7}{2}}(c+d x)} \, dx\\ &=-\frac {2 \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}{5 d}-\frac {1}{5} \left (2 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {-\frac {b}{2}+\frac {5}{2} a \tan (c+d x)+2 b \tan ^2(c+d x)}{\tan ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx\\ &=-\frac {2 b \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}{15 a d}-\frac {2 \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}{5 d}+\frac {\left (4 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\frac {1}{4} \left (-15 a^2-2 b^2\right )-\frac {15}{4} a b \tan (c+d x)-\frac {1}{2} b^2 \tan ^2(c+d x)}{\tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx}{15 a}\\ &=\frac {2 \left (15 a^2+2 b^2\right ) \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}{15 a^2 d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}{15 a d}-\frac {2 \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}{5 d}-\frac {\left (8 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\frac {15 a^2 b}{8}-\frac {15}{8} a^3 \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{15 a^2}\\ &=\frac {2 \left (15 a^2+2 b^2\right ) \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}{15 a^2 d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}{15 a d}-\frac {2 \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}{5 d}+\frac {1}{2} \left ((i a-b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx-\frac {1}{2} \left ((i a+b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {1+i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx\\ &=\frac {2 \left (15 a^2+2 b^2\right ) \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}{15 a^2 d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}{15 a d}-\frac {2 \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}{5 d}+\frac {\left ((i a-b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{(1+i x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}-\frac {\left ((i a+b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{(1-i x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}\\ &=\frac {2 \left (15 a^2+2 b^2\right ) \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}{15 a^2 d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}{15 a d}-\frac {2 \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}{5 d}+\frac {\left ((i a-b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{1-(-i a+b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {\left ((i a+b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{1-(i a+b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}\\ &=\frac {\sqrt {i a-b} \tan ^{-1}\left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {\sqrt {i a+b} \tanh ^{-1}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {2 \left (15 a^2+2 b^2\right ) \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}{15 a^2 d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}{15 a d}-\frac {2 \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}{5 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 2.30, size = 220, normalized size = 0.84 \begin {gather*} \frac {\sqrt {\cot (c+d x)} \left (15 \sqrt [4]{-1} a^2 \sqrt {-a+i b} \text {ArcTan}\left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\tan (c+d x)}+15 \sqrt [4]{-1} a^2 \sqrt {a+i b} \text {ArcTan}\left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\tan (c+d x)}-2 \left (-15 a^2-2 b^2+a b \cot (c+d x)+3 a^2 \cot ^2(c+d x)\right ) \sqrt {a+b \tan (c+d x)}\right )}{15 a^2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^(7/2)*Sqrt[a + b*Tan[c + d*x]],x]

[Out]

(Sqrt[Cot[c + d*x]]*(15*(-1)^(1/4)*a^2*Sqrt[-a + I*b]*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sq
rt[a + b*Tan[c + d*x]]]*Sqrt[Tan[c + d*x]] + 15*(-1)^(1/4)*a^2*Sqrt[a + I*b]*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*
Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Tan[c + d*x]] - 2*(-15*a^2 - 2*b^2 + a*b*Cot[c + d*x] + 3*a
^2*Cot[c + d*x]^2)*Sqrt[a + b*Tan[c + d*x]]))/(15*a^2*d)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 36.90, size = 21305, normalized size = 81.63

method result size
default \(\text {Expression too large to display}\) \(21305\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(7/2)*(a+b*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(7/2)*(a+b*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*tan(d*x + c) + a)*cot(d*x + c)^(7/2), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(7/2)*(a+b*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(7/2)*(a+b*tan(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(7/2)*(a+b*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(si

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int {\mathrm {cot}\left (c+d\,x\right )}^{7/2}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^(7/2)*(a + b*tan(c + d*x))^(1/2),x)

[Out]

int(cot(c + d*x)^(7/2)*(a + b*tan(c + d*x))^(1/2), x)

________________________________________________________________________________________